Paper Reading AI Learner

CheXagent: Towards a Foundation Model for Chest X-Ray Interpretation

2024-01-22 18:51:07
Zhihong Chen, Maya Varma, Jean-Benoit Delbrouck, Magdalini Paschali, Louis Blankemeier, Dave Van Veen, Jeya Maria Jose Valanarasu, Alaa Youssef, Joseph Paul Cohen, Eduardo Pontes Reis, Emily B. Tsai, Andrew Johnston, Cameron Olsen, Tanishq Mathew Abraham, Sergios Gatidis, Akshay S. Chaudhari, Curtis Langlotz

Abstract

Chest X-rays (CXRs) are the most frequently performed imaging test in clinical practice. Recent advances in the development of vision-language foundation models (FMs) give rise to the possibility of performing automated CXR interpretation, which can assist physicians with clinical decision-making and improve patient outcomes. However, developing FMs that can accurately interpret CXRs is challenging due to the (1) limited availability of large-scale vision-language datasets in the medical image domain, (2) lack of vision and language encoders that can capture the complexities of medical data, and (3) absence of evaluation frameworks for benchmarking the abilities of FMs on CXR interpretation. In this work, we address these challenges by first introducing \emph{CheXinstruct} - a large-scale instruction-tuning dataset curated from 28 publicly-available datasets. We then present \emph{CheXagent} - an instruction-tuned FM capable of analyzing and summarizing CXRs. To build CheXagent, we design a clinical large language model (LLM) for parsing radiology reports, a vision encoder for representing CXR images, and a network to bridge the vision and language modalities. Finally, we introduce \emph{CheXbench} - a novel benchmark designed to systematically evaluate FMs across 8 clinically-relevant CXR interpretation tasks. Extensive quantitative evaluations and qualitative reviews with five expert radiologists demonstrate that CheXagent outperforms previously-developed general- and medical-domain FMs on CheXbench tasks. Furthermore, in an effort to improve model transparency, we perform a fairness evaluation across factors of sex, race and age to highlight potential performance disparities. Our project is at \url{this https URL}.

Abstract (translated)

翻译 胸部X光(CXRs)是临床实践中最常进行的影像学检查。近年来,在视觉语言模型(FMs)的发展中,自动进行CXR interpretation的可能性得以实现,这可以协助医生进行临床决策并提高患者治疗效果。然而,开发可以准确解释CXR的FM具有挑战性,因为(1)在医学图像领域大型视觉语言数据集的可用性有限,(2)缺乏可以捕捉医学数据复杂性的视觉和语言编码器,(3)缺乏评估FM在CXR解释能力方面的标准框架。在这项工作中,我们通过首先介绍 CheXinstruct - 一个来自28个公开可用数据集的大型指令调整数据集来解决这些挑战。然后,我们介绍了 CheXagent - 一个经过指令调整的FM,可以分析和总结CXR。为了构建CheXagent,我们设计了一个用于解析放射学报告的临床大型语言模型、一个用于表示CXR图像的视觉编码器和一种桥接视觉和语言模型的网络。最后,我们介绍了 CheXbench - 一个旨在系统地评估FM在8个临床相关CXR解释任务上的新颖基准。通过对五个专家放射医生的深入定量评估和定性审查,我们可以得出结论,CheXagent在CheXbench任务上优于之前开发的一般和医学领域FM。此外,为了提高模型透明度,我们对性别、种族和年龄等因素进行了公平评估,以突出可能存在的性能差异。我们的项目位于此链接。

URL

https://arxiv.org/abs/2401.12208

PDF

https://arxiv.org/pdf/2401.12208.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model LLM Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Robot Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Time_Series Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot