Paper Reading AI Learner

Reconstructing facade details using MLS point clouds and Bag-of-Words approach

2024-02-09 16:34:28
Thomas Froech, Olaf Wysocki, Ludwig Hoegner, Uwe Stilla

Abstract

In the reconstruction of façade elements, the identification of specific object types remains challenging and is often circumvented by rectangularity assumptions or the use of bounding boxes. We propose a new approach for the reconstruction of 3D façade details. We combine MLS point clouds and a pre-defined 3D model library using a BoW concept, which we augment by incorporating semi-global features. We conduct experiments on the models superimposed with random noise and on the TUM-FAÇADE dataset. Our method demonstrates promising results, improving the conventional BoW approach. It holds the potential to be utilized for more realistic facade reconstruction without rectangularity assumptions, which can be used in applications such as testing automated driving functions or estimating façade solar potential.

Abstract (translated)

在外墙元素的重构中,确定具体物体类型仍然具有挑战性,并且通常通过矩形性假设或使用边界框来规避。我们提出了一种新的外墙细节重构方法。我们通过结合MLS点云和预定义的3D模型库,使用BW概念进行增强,并引入半全局特征。我们在包含随机噪声的外模型的实验和TUM-FAÇADE数据集上进行了实验。我们的方法取得了很好的结果,改善了传统的BW方法。它具有在不考虑矩形性假设的情况下进行更真实外墙重构的潜力,可以应用于自动驾驶功能的测试或估计外墙太阳能潜力等应用。

URL

https://arxiv.org/abs/2402.06521

PDF

https://arxiv.org/pdf/2402.06521.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model LLM Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Robot Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Time_Series Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot