Paper Reading AI Learner

Workspace Analysis for Laparoscopic Rectal Surgery : A Preliminary Study

2024-02-22 08:57:53
Alexandra Thomieres (CHU Nantes), Dhruva Khanzode (CSIR, AcSIR, LS2N - équipe RoMas), Emilie Duchalais (CHU Nantes), Ranjan Jha (CSIR, AcSIR), Damien Chablat (LS2N, LS2N - équipe RoMas)


The integration of medical imaging, computational analysis, and robotic technology has brought about a significant transformation in minimally invasive surgical procedures, particularly in the realm of laparoscopic rectal surgery (LRS). This specialized surgical technique, aimed at addressing rectal cancer, requires an in-depth comprehension of the spatial dynamics within the narrow space of the pelvis. Leveraging Magnetic Resonance Imaging (MRI) scans as a foundational dataset, this study incorporates them into Computer-Aided Design (CAD) software to generate precise three-dimensional (3D) reconstructions of the patient's anatomy. At the core of this research is the analysis of the surgical workspace, a critical aspect in the optimization of robotic interventions. Sophisticated computational algorithms process MRI data within the CAD environment, meticulously calculating the dimensions and contours of the pelvic internal regions. The outcome is a nuanced understanding of both viable and restricted zones during LRS, taking into account factors such as curvature, diameter variations, and potential obstacles. This paper delves deeply into the complexities of workspace analysis for robotic LRS, illustrating the seamless collaboration between medical imaging, CAD software, and surgical robotics. Through this interdisciplinary approach, the study aims to surpass traditional surgical methodologies, offering novel insights for a paradigm shift in optimizing robotic interventions within the complex environment of the pelvis.

Abstract (translated)

医疗影像、计算分析和机器人技术的集成已经在微创手术中产生了显著的变革,特别是在直肠癌的腹腔镜右半结肠手术(LRS)领域。这种专门针对直肠癌的手术技术,旨在解决盆底问题,需要对盆腔空间内的空间动力学有深入的理解。将磁共振成像(MRI)扫描作为基础数据,本研究将它们纳入计算机辅助设计(CAD)软件中,生成精确的三维(3D)人体解剖结构的重建。 这项研究的核心是对手术工作空间的分析,这是在优化机器人干预方面进行优化的重要方面。复杂的计算算法在CAD环境中处理MRI数据,仔细计算盆底内部区域的尺寸和轮廓。结果是对LRS中可行和受限区域的微妙理解,考虑诸如弯曲、直径变化和潜在障碍等因素。本文深入研究了机器人LRS工作空间分析的复杂性,展示了医疗影像、CAD软件和机器人手术之间的无缝合作。通过这种跨学科的方法,该研究旨在超越传统的手术方法,为盆底手术在复杂的环境中的优化提供新颖的见解,为盆底手术方法的发展做出贡献。



3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot