Paper Reading AI Learner

PrivatEyes: Appearance-based Gaze Estimation Using Federated Secure Multi-Party Computation

2024-02-29 09:19:06
Mayar Elfares, Pascal Reisert, Zhiming Hu, Wenwu Tang, Ralf K\"usters, Andreas Bulling

Abstract

Latest gaze estimation methods require large-scale training data but their collection and exchange pose significant privacy risks. We propose PrivatEyes - the first privacy-enhancing training approach for appearance-based gaze estimation based on federated learning (FL) and secure multi-party computation (MPC). PrivatEyes enables training gaze estimators on multiple local datasets across different users and server-based secure aggregation of the individual estimators' updates. PrivatEyes guarantees that individual gaze data remains private even if a majority of the aggregating servers is malicious. We also introduce a new data leakage attack DualView that shows that PrivatEyes limits the leakage of private training data more effectively than previous approaches. Evaluations on the MPIIGaze, MPIIFaceGaze, GazeCapture, and NVGaze datasets further show that the improved privacy does not lead to a lower gaze estimation accuracy or substantially higher computational costs - both of which are on par with its non-secure counterparts.

Abstract (translated)

最新的目光估计方法需要大规模训练数据,但它们的收集和交换却存在着显著的隐私风险。我们提出PrivatEyes - 基于联邦学习和安全多方计算(MPC)的第一个隐私增强训练方法,用于基于外观的目光估计。PrivatEyes使多个局部数据集上的训练目光估计算法能够在不同的用户和服务器上进行训练,并对个人估计算法的更新进行安全聚合。PrivatEyes保证,即使大多数聚合服务器都是恶意的,个人目光数据也不会泄漏。我们还引入了一种新的数据泄露攻击DualView,证明了PrivatEyes比其他方法更有效地限制了训练数据的泄露。在MPIIGaze、MPIIFaceGaze、GazeCapture和NVGaze数据集上的评估进一步表明,提高隐私不会导致目光估计精度降低,或者导致计算成本大幅上升——这两者与非安全对照物的水平相当。

URL

https://arxiv.org/abs/2402.18970

PDF

https://arxiv.org/pdf/2402.18970.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model LLM Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Robot Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot