Paper Reading AI Learner

Towards More Realistic Human-Robot Conversation: A Seq2Seq-based Body Gesture Interaction System

2019-05-05 09:53:29
Minjie Hua, Fuyuan Shi, Yibing Nan, Kai Wang, Hao Chen, Shiguo Lian


This paper presents a novel method to improve the conversational interaction abilities of intelligent robots to enable more realistic body gestures. The sequence-to-sequence (seq2seq) model is adapted for synthesizing the robots' body gestures represented by the movements of twelve upper-body keypoints in not only the speaking phase, but also the listening phase for which previous methods can hardly achieve. We collected and preprocessed substantial videos of human conversation from Youtube to train our seq2seq-based models and evaluated them by the mean squared error (MSE) and cosine similarity on the test set. The tuned models were implemented to drive a virtual avatar as well as a physical humanoid robot, to demonstrate the improvement on interaction abilities of our method in practice. With body gestures synthesized by our models, the avatar and Pepper exhibited more intelligently while communicating with humans.

Abstract (translated)



3D Action Action_Localization Action_Recognition Activity Adversarial Attention Autonomous Bert Boundary_Detection Caption Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Drone Dynamic_Memory_Network Edge_Detection Embedding Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot