Paper Reading AI Learner

FlexMap Fusion: Georeferencing and Automated Conflation of HD~Maps with OpenStreetMap

2024-04-16 19:56:50
Maximilian Leitenstern, Florian Sauerbeck, Dominik Kulmer, Johannes Betz


Today's software stacks for autonomous vehicles rely on HD maps to enable sufficient localization, accurate path planning, and reliable motion prediction. Recent developments have resulted in pipelines for the automated generation of HD maps to reduce manual efforts for creating and updating these HD maps. We present FlexMap Fusion, a methodology to automatically update and enhance existing HD vector maps using OpenStreetMap. Our approach is designed to enable the use of HD maps created from LiDAR and camera data within Autoware. The pipeline provides different functionalities: It provides the possibility to georeference both the point cloud map and the vector map using an RTK-corrected GNSS signal. Moreover, missing semantic attributes can be conflated from OpenStreetMap into the vector map. Differences between the HD map and OpenStreetMap are visualized for manual refinement by the user. In general, our findings indicate that our approach leads to reduced human labor during HD map generation, increases the scalability of the mapping pipeline, and improves the completeness and usability of the maps. The methodological choices may have resulted in limitations that arise especially at complex street structures, e.g., traffic islands. Therefore, more research is necessary to create efficient preprocessing algorithms and advancements in the dynamic adjustment of matching parameters. In order to build upon our work, our source code is available at this https URL.

Abstract (translated)

今天的自动驾驶软件栈依赖HD地图来实现足够的局部定位、精确路径规划和可靠的运动预测。最近的发展使得自动化生成HD地图的流程减少了对创建和更新这些HD地图的手动努力。我们提出了FlexMap Fusion,一种利用OpenStreetMap自动更新和增强现有HD矢量地图的方法。我们的方法旨在使使用来自激光雷达和相机数据的HD地图在Autoware中得到更广泛的应用。管道提供了不同的功能:它提供了使用RTK校正的GNSS信号将点云地图和矢量地图进行几何参考的可能性。此外,缺失的语义属性可以从OpenStreetMap中 conflat到矢量地图中。用户可以通过手动细化来使用户查看HD地图和OpenStreetMap之间的差异。总的来说,我们的研究结果表明,我们的方法在HD地图生成过程中减少了人类劳动,提高了地图映射管道的可扩展性,并提高了地图的完整性和可用性。方法论选择可能导致在复杂街道结构(如交通岛屿)上出现限制。因此,需要进行更多的研究来创建高效的预处理算法和改进动态调整匹配参数。为了基于我们的工作,我们的源代码可在此链接处访问:。



3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model LLM Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Robot Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot