Paper Reading AI Learner

From Text to Context: An Entailment Approach for News Stakeholder Classification

2024-05-14 16:35:21
Alapan Kuila, Sudeshna Sarkar

Abstract

Navigating the complex landscape of news articles involves understanding the various actors or entities involved, referred to as news stakeholders. These stakeholders, ranging from policymakers to opposition figures, citizens, and more, play pivotal roles in shaping news narratives. Recognizing their stakeholder types, reflecting their roles, political alignments, social standing, and more, is paramount for a nuanced comprehension of news content. Despite existing works focusing on salient entity extraction, coverage variations, and political affiliations through social media data, the automated detection of stakeholder roles within news content remains an underexplored domain. In this paper, we bridge this gap by introducing an effective approach to classify stakeholder types in news articles. Our method involves transforming the stakeholder classification problem into a natural language inference task, utilizing contextual information from news articles and external knowledge to enhance the accuracy of stakeholder type detection. Moreover, our proposed model showcases efficacy in zero-shot settings, further extending its applicability to diverse news contexts.

Abstract (translated)

浏览新闻文章的复杂多变的景观,需要理解各种参与者的身份,这些参与者从决策者到反对派人物、公民等,在塑造新闻故事中发挥着关键作用。了解他们的角色、政治观点、社会地位等,对于深入理解新闻内容至关重要。尽管现有的工作集中于通过社交媒体数据突出实体、覆盖差异和政治立场,但自动检测新闻内容中的参与者角色仍然是一个未被探索的领域。在本文中,我们通过引入一种有效的分类新闻文章中参与者类型的方法,跨越了这个领域的空白。我们的方法将参与者分类问题转化为自然语言推理任务,利用新闻文章的上下文信息和外部知识来提高参与者类型检测的准确性。此外,我们所提出的模型在零散设置中表现出优异效果,进一步拓展了其在各种新闻环境中的应用。

URL

https://arxiv.org/abs/2405.08751

PDF

https://arxiv.org/pdf/2405.08751.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model LLM Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Robot Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot