Paper Reading AI Learner

Graph Neural Network based Handwritten Trajectories Recognition

2024-05-15 11:00:42
Anuj Sharma, Sukhdeep Singh, S Ratna

Abstract

The graph neural networks has been proved to be an efficient machine learning technique in real life applications. The handwritten recognition is one of the useful area in real life use where both offline and online handwriting recognition are required. The chain code as feature extraction technique has shown significant results in literature and we have been able to use chain codes with graph neural networks. To the best of our knowledge, this work presents first time a novel combination of handwritten trajectories features as chain codes and graph neural networks together. The handwritten trajectories for offline handwritten text has been evaluated using recovery of drawing order, whereas online handwritten trajectories are directly used with chain codes. Our results prove that present combination surpass previous results and minimize error rate in few epochs only.

Abstract (translated)

已经证明,图神经网络在现实生活中应用是有效的机器学习技术。手写识别是现实生活中的一个有用的领域,需要同时进行离线和在线手写识别。作为特征提取技术,链式码在文献中已经显示出显著的成果,我们能够使用图神经网络与链式码一起工作。据我们所知,这项工作首次将手写轨迹特征与链式码和图神经网络相结合,形成了一种新的组合。我们使用恢复绘制顺序来评估手写在线文本的手写轨迹,而在线手写轨迹则直接使用链式码。我们的结果证明,这种结合超出了以前的结果,并且在几轮训练后仅能最小化误差率。

URL

https://arxiv.org/abs/2405.09247

PDF

https://arxiv.org/pdf/2405.09247.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model LLM Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Robot Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Time_Series Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot