Paper Reading AI Learner

Impact of Design Decisions in Scanpath Modeling

2024-05-14 22:27:12
Parvin Emami, Yue Jiang, Zixin Guo, Luis A. Leiva

Abstract

Modeling visual saliency in graphical user interfaces (GUIs) allows to understand how people perceive GUI designs and what elements attract their attention. One aspect that is often overlooked is the fact that computational models depend on a series of design parameters that are not straightforward to decide. We systematically analyze how different design parameters affect scanpath evaluation metrics using a state-of-the-art computational model (DeepGaze++). We particularly focus on three design parameters: input image size, inhibition-of-return decay, and masking radius. We show that even small variations of these design parameters have a noticeable impact on standard evaluation metrics such as DTW or Eyenalysis. These effects also occur in other scanpath models, such as UMSS and ScanGAN, and in other datasets such as MASSVIS. Taken together, our results put forward the impact of design decisions for predicting users' viewing behavior on GUIs.

Abstract (translated)

在图形用户界面(GUIs)中建模视觉显著性可以帮助人们理解如何看待GUI设计以及哪些元素会吸引他们的注意。通常被忽视的一个方面是,计算模型依赖于一系列设计参数,而这些参数并不容易决定。我们使用最先进的计算模型(DeepGaze++)系统地分析不同设计参数如何影响扫描路径评估指标。我们特别关注三个设计参数:输入图像大小、抑制返回衰减和掩码半径。我们发现,即使是这些设计参数的小变化也会对标准评估指标,如DTW或Eyenalysis产生显著影响。这些影响也存在于其他扫描路径模型中,如UMSS和ScanGAN,以及其他数据集中。结合我们的结果,我们提出了设计决策对预测用户在GUIs上的观看行为具有影响的观点。

URL

https://arxiv.org/abs/2405.08981

PDF

https://arxiv.org/pdf/2405.08981.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model LLM Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Robot Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot