Paper Reading AI Learner

Combining Noise-to-Image and Image-to-Image GANs: Brain MR Image Augmentation for Tumor Detection

2019-05-31 08:14:19
Changhee Han, Leonardo Rundo, Ryosuke Araki, Yudai Nagano, Yujiro Furukawa, Giancarlo Mauri, Hideki Nakayama, Hideaki Hayashi

Abstract

Convolutional Neural Networks (CNNs) can achieve excellent computer-assisted diagnosis performance, relying on sufficient annotated training data. Unfortunately, most medical imaging datasets, often collected from various scanners, are small and fragmented. In this context, as a Data Augmentation (DA) technique, Generative Adversarial Networks (GANs) can synthesize realistic/diverse additional training images to fill the data lack in the real image distribution; researchers have improved classification by augmenting images with noise-to-image (e.g., random noise samples to diverse pathological images) or image-to-image GANs (e.g., a benign image to a malignant one). Yet, no research has reported results combining (i) noise-to-image GANs and image-to-image GANs or (ii) GANs and other deep generative models, for further performance boost. Therefore, to maximize the DA effect with the GAN combinations, we propose a two-step GAN-based DA that generates and refines brain MR images with/without tumors separately: (i) Progressive Growing of GANs (PGGANs), multi-stage noise-to-image GAN for high-resolution image generation, first generates realistic/diverse 256 x 256 images--even a physician cannot accurately distinguish them from real ones via Visual Turing Test; (ii) UNsupervised Image-to-image Translation or SimGAN, image-to-image GAN combining GANs/Variational AutoEncoders or using a GAN loss for DA, further refines the texture/shape of the PGGAN-generated images similarly to the real ones. We thoroughly investigate CNN-based tumor classification results, also considering the influence of pre-training on ImageNet and discarding weird-looking GAN-generated images. The results show that, when combined with classic DA, our two-step GAN-based DA can significantly outperform the classic DA alone, in tumor detection (i.e., boosting sensitivity from 93.63% to 97.53%) and also in other tasks.

Abstract (translated)

卷积神经网络(CNN)依靠足够的标注训练数据,可以获得良好的计算机辅助诊断性能。不幸的是,大多数医学成像数据集,通常是从不同的扫描仪收集的,都很小而且支离破碎。在此背景下,生成对抗网络(gans)作为一种数据增强(da)技术,可以合成真实/多样的额外训练图像,以填补真实图像分布中的数据不足;研究人员通过将图像与噪声进行图像增强来改进分类(例如,随机噪声样本与多样的病理图像)。)或图像到图像的gan(例如,良性图像到恶性图像)。然而,还没有研究报告将(i)噪声与图像Gans和图像与图像Gans相结合的结果,或(ii)Gans和其他深层次生成模型,以进一步提高性能。因此,为了最大限度地利用氮化镓的结合,我们提出了一种基于氮化镓的两步DA,它分别生成和优化有/无肿瘤的大脑磁共振图像:(i)Gans(pggans)的渐进式生长,高分辨率图像生成的多级噪声到图像Gan,首先生成逼真/多样的256 x 256图像,甚至是一个物理图像。CIAN无法通过视觉图灵测试准确地将其与真实图像区分开来;(ii)无监督图像到图像转换或simgan、图像到图像gan结合gans/变分自动编码器或使用gan丢失进行da,进一步优化pggan生成的图像的纹理/形状,与真实图像相似。我们深入研究了基于CNN的肿瘤分类结果,同时考虑了预训练对图像网络的影响,丢弃了GaN生成的奇怪图像。结果表明,在肿瘤检测(即将敏感性从93.63%提高到97.53%)以及其他任务中,我们的两步Gan-based DA与经典DA结合后,可以显著优于经典DA。

URL

https://arxiv.org/abs/1905.13456

PDF

https://arxiv.org/pdf/1905.13456.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot