Paper Reading AI Learner

Grading Massive Open Online Courses Using Large Language Models

2024-06-16 23:42:11
Shahriar Golchin, Nikhil Garuda, Christopher Impey, Matthew Wenger

Abstract

Massive open online courses (MOOCs) offer free education globally to anyone with a computer and internet access. Despite this democratization of learning, the massive enrollment in these courses makes it impractical for one instructor to assess every student's writing assignment. As a result, peer grading, often guided by a straightforward rubric, is the method of choice. While convenient, peer grading often falls short in terms of reliability and validity. In this study, we explore the feasibility of using large language models (LLMs) to replace peer grading in MOOCs. Specifically, we use two LLMs, GPT-4 and GPT-3.5, across three MOOCs: Introductory Astronomy, Astrobiology, and the History and Philosophy of Astronomy. To instruct LLMs, we use three different prompts based on the zero-shot chain-of-thought (ZCoT) prompting technique: (1) ZCoT with instructor-provided correct answers, (2) ZCoT with both instructor-provided correct answers and rubrics, and (3) ZCoT with instructor-provided correct answers and LLM-generated rubrics. Tested on 18 settings, our results show that ZCoT, when augmented with instructor-provided correct answers and rubrics, produces grades that are more aligned with those assigned by instructors compared to peer grading. Finally, our findings indicate a promising potential for automated grading systems in MOOCs, especially in subjects with well-defined rubrics, to improve the learning experience for millions of online learners worldwide.

Abstract (translated)

URL

https://arxiv.org/abs/2406.11102

PDF

https://arxiv.org/pdf/2406.11102.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model LLM Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Robot Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot