Paper Reading AI Learner

A Novel Algorithm for Community Detection in Networks using Rough Sets and Consensus Clustering

2024-06-18 09:01:21
Darian H. Grass-Boada, Leandro Gonz\'alez-Montesino, Rub\'en Arma\~nanzas


Complex networks, such as those in social, biological, and technological systems, often present challenges to the task of community detection. Our research introduces a novel rough clustering based consensus community framework (RC-CCD) for effective structure identification of network communities. The RC-CCD method employs rough set theory to handle uncertainties within data and utilizes a consensus clustering approach to aggregate multiple clustering results, enhancing the reliability and accuracy of community detection. This integration allows the RC-CCD to effectively manage overlapping communities, which are often present in complex networks. This approach excels at detecting overlapping communities, offering a detailed and accurate representation of network structures. Comprehensive testing on benchmark networks generated by the Lancichinetti-Fortunato-Radicchi method showcased the strength and adaptability of the new proposal to varying node degrees and community sizes. Cross-comparisons of RC-CCD versus other well known detection algorithms outcomes highlighted its stability and adaptability.

Abstract (translated)



3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model LLM Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Robot Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot