Paper Reading AI Learner

Synergizing Foundation Models and Federated Learning: A Survey

2024-06-18 17:58:09
Shenghui Li, Fanghua Ye, Meng Fang, Jiaxu Zhao, Yun-Hin Chan, Edith C. -H. Ngai, Thiemo Voigt

Abstract

The recent development of Foundation Models (FMs), represented by large language models, vision transformers, and multimodal models, has been making a significant impact on both academia and industry. Compared with small-scale models, FMs have a much stronger demand for high-volume data during the pre-training phase. Although general FMs can be pre-trained on data collected from open sources such as the Internet, domain-specific FMs need proprietary data, posing a practical challenge regarding the amount of data available due to privacy concerns. Federated Learning (FL) is a collaborative learning paradigm that breaks the barrier of data availability from different participants. Therefore, it provides a promising solution to customize and adapt FMs to a wide range of domain-specific tasks using distributed datasets whilst preserving privacy. This survey paper discusses the potentials and challenges of synergizing FL and FMs and summarizes core techniques, future directions, and applications. A periodically updated paper collection on FM-FL is available at this https URL.

Abstract (translated)

近年来,随着大型语言模型、视觉 transformers 和多模态模型的快速发展,基础模型(FMs)在学术界和产业界都产生了重大影响。与小规模模型相比,FMs 在预训练阶段对大量数据的需求更强。虽然通用 FM 可以预训练在开源数据集上,但领域特定的 FM 需要专有数据,这给隐私问题带来了实际挑战,因为担心数据不足。去中心化学习(FL)是一种合作学习范式,打破了不同参与者数据可用性的障碍。因此,它为通过分布式数据集定制和适应 FM 提供了一个有前途的解决方案,同时保留隐私。本调查论文讨论了 FL 和 FM 的协同作用潜力与挑战,并总结了核心技术、未来方向和应用。目前,关于 FM-FL 的定期更新论文集可在此链接查阅。

URL

https://arxiv.org/abs/2406.12844

PDF

https://arxiv.org/pdf/2406.12844.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model LLM Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Robot Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot