Paper Reading AI Learner

DeepMOT: A Differentiable Framework for Training Multiple Object Trackers

2019-06-15 21:34:30
Yihong Xu, Yutong Ban, Xavier Alameda-Pineda, Radu Horaud

Abstract

Multiple Object Tracking accuracy and precision (MOTA and MOTP) are two standard and widely-used metrics to assess the quality of multiple object trackers. They are specifically designed to encode the challenges and difficulties of tracking multiple objects. To directly optimize a tracker based on MOTA and MOTP is difficult, since both the metrics are strongly rely on the Hungarian algorithm, which are non-differentiable. We propose a differentiable proxy for the MOTA and MOTP, thus allowing to train a deep multiple-object tracker by directly optimizing (a proxy of) the standard MOT metrics. The proposed approximation is based on a bidirectional recurrent network that inputs the object-to-hypothesis distance matrix and outputs the optimal hypothesis-to-object association, thus emulating the Hungarian algorithm. Followed by a differentiable module, the estimated association is used to compute the MOTA and MOTP. The experimental study demonstrates the benefits of this differentiable framework on two recent deep trackers over the MOT17 dataset. Moreover, the code is publicly available from https://gitlab.inria.fr/yixu/deepmot.

Abstract (translated)

URL

https://arxiv.org/abs/1906.06618

PDF

https://arxiv.org/pdf/1906.06618.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot