Paper Reading AI Learner

Hardware Aware Neural Network Architectures using FbNet

2019-06-17 18:34:01
Sai Vineeth Kalluru Srinivas, Harideep Nair, Vinay Vidyasagar

Abstract

We implement a differentiable Neural Architecture Search (NAS) method inspired by FBNet for discovering neural networks that are heavily optimized for a particular target device. The FBNet NAS method discovers a neural network from a given search space by optimizing over a loss function which accounts for accuracy and target device latency. We extend this loss function by adding an energy term. This will potentially enhance the ``hardware awareness" and help us find a neural network architecture that is optimal in terms of accuracy, latency and energy consumption, given a target device (Raspberry Pi in our case). We name our trained child architecture obtained at the end of search process as Hardware Aware Neural Network Architecture (HANNA). We prove the efficacy of our approach by benchmarking HANNA against two other state-of-the-art neural networks designed for mobile/embedded applications, namely MobileNetv2 and CondenseNet for CIFAR-10 dataset. Our results show that HANNA provides a speedup of about 2.5x and 1.7x, and reduces energy consumption by 3.8x and 2x compared to MobileNetv2 and CondenseNet respectively. HANNA is able to provide such significant speedup and energy efficiency benefits over the state-of-the-art baselines at the cost of a tolerable 4-5% drop in accuracy.

Abstract (translated)

URL

https://arxiv.org/abs/1906.07214

PDF

https://arxiv.org/pdf/1906.07214.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot