Paper Reading AI Learner

Square root-based multi-source early PSD estimation and recursive RETF update in reverberant environments by means of the orthogonal Procrustes problem

2019-06-18 11:02:29
T. Dietzen, S. Doclo, M. Moonen, T. van Waterschoot

Abstract

Multi-channel short-time Fourier transform (STFT) domain-based processing of reverberant microphone signals commonly relies on power-spectral-density (PSD) estimates of early source images, where early refers to reflections contained within the same STFT frame. State-of-the-art approaches to multi-source early PSD estimation, given an estimate of the associated relative early transfer functions (RETFs), conventionally minimize the approximation error defined with respect to the early correlation matrix, requiring non-negative inequality constraints on the PSDs. Instead, we here propose to factorize the early correlation matrix and minimize the approximation error defined with respect to the early-correlation-matrix square root. The proposed minimization problem -- constituting a generalization of the so-called orthogonal Procrustes problem -- seeks a unitary matrix and the square roots of the early PSDs up to an arbitrary complex argument, making non-negative inequality constraints redundant. A solution is obtained iteratively, requiring one singular value decomposition (SVD) per iteration. The estimated unitary matrix and early PSD square roots further allow to recursively update the RETF estimate, which is not inherently possible in the conventional approach. An estimate of the said early-correlation-matrix square root itself is obtained by means of the generalized eigenvalue decomposition (GEVD), where we further propose to restore non-stationarities by desmoothing the generalized eigenvalues in order to compensate for inevitable recursive averaging. Simulation results indicate fast convergence of the proposed multi-source early PSD estimation approach in only one iteration if initialized appropriately, and better performance as compared to the conventional approach.

Abstract (translated)

URL

https://arxiv.org/abs/1906.07493

PDF

https://arxiv.org/pdf/1906.07493.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot