Paper Reading AI Learner

Multi-head Spatial-Spectral Mamba for Hyperspectral Image Classification

2024-08-02 12:27:15
Muhammad Ahmad, Muhammad Hassaan Farooq Butt, Muhammad Usama, Hamad Ahmed Altuwaijri, Manual Mazzara, Salvatore Distenano

Abstract

Spatial-Spectral Mamba (SSM) improves computational efficiency and captures long-range dependencies, addressing Transformer limitations. However, traditional Mamba models overlook rich spectral information in HSIs and struggle with high dimensionality and sequential data. To address these issues, we propose the SSM with multi-head self-attention and token enhancement (MHSSMamba). This model integrates spectral and spatial information by enhancing spectral tokens and using multi-head attention to capture complex relationships between spectral bands and spatial locations. It also manages long-range dependencies and the sequential nature of HSI data, preserving contextual information across spectral bands. MHSSMamba achieved remarkable classification accuracies of 97.62\% on Pavia University, 96.92\% on the University of Houston, 96.85\% on Salinas, and 99.49\% on Wuhan-longKou datasets.

Abstract (translated)

空间-谱马哈(SSM)通过提高计算效率并捕捉长距离依赖解决了Transformer的局限性。然而,传统的Mamba模型忽视了HSI中丰富的光谱信息,并难以处理高维度和序列数据。为解决这些问题,我们提出了带有多头自注意力和标记增强(MHSSMamba)的SSM。这个模型通过增强光谱元词并使用多头注意力来捕捉光谱带和空间位置之间的复杂关系。它还管理长距离依赖和HSI数据的序列性质,保留跨光谱带的上下文信息。MHSSMamba在Pavia大学、休斯顿大学、Salinas和吴哥长宽高数据集上的分类准确度分别为97.62%、96.92%、96.85%和99.49%。

URL

https://arxiv.org/abs/2408.01224

PDF

https://arxiv.org/pdf/2408.01224.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model LLM Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Robot Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Time_Series Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot