Paper Reading AI Learner

Toward Automatic Relevance Judgment using Vision--Language Models for Image--Text Retrieval Evaluation

2024-08-02 16:15:25
Jheng-Hong Yang, Jimmy Lin

Abstract

Vision--Language Models (VLMs) have demonstrated success across diverse applications, yet their potential to assist in relevance judgments remains uncertain. This paper assesses the relevance estimation capabilities of VLMs, including CLIP, LLaVA, and GPT-4V, within a large-scale \textit{ad hoc} retrieval task tailored for multimedia content creation in a zero-shot fashion. Preliminary experiments reveal the following: (1) Both LLaVA and GPT-4V, encompassing open-source and closed-source visual-instruction-tuned Large Language Models (LLMs), achieve notable Kendall's $\tau \sim 0.4$ when compared to human relevance judgments, surpassing the CLIPScore metric. (2) While CLIPScore is strongly preferred, LLMs are less biased towards CLIP-based retrieval systems. (3) GPT-4V's score distribution aligns more closely with human judgments than other models, achieving a Cohen's $\kappa$ value of around 0.08, which outperforms CLIPScore at approximately -0.096. These findings underscore the potential of LLM-powered VLMs in enhancing relevance judgments.

Abstract (translated)

视觉语言模型(VLMs)在各种应用领域都取得了成功,但它们在辅助进行相关性判断方面的潜力仍然不确定。本文评估了包括CLIP、LLaVA和GPT-4V在内的VLMs在大型临时检索任务中的相关性估计能力。初步实验结果如下:(1)LLaVA和GPT-4V,包括开源和闭源的视觉指令调整的大型语言模型(LLMs),在比较人类相关性判断时,实现了显著的Kendall分数$\tau \approx 0.4$,超过了CLIPScore指标。(2)虽然CLIPScore受到了很高的偏好,但LLM在CLIP基于检索系统上的偏见较小。(3)GPT-4V的得分分布与人类判断更加接近其他模型,实现了科恩分数$\kappa$值约为0.08,这超过了CLIPScore约-0.096。这些发现强调了LLM驱动的VLMs在增强相关性判断方面的潜力。

URL

https://arxiv.org/abs/2408.01363

PDF

https://arxiv.org/pdf/2408.01363.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model LLM Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Robot Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Time_Series Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot