Paper Reading AI Learner

Evolving Robust Neural Architectures to Defend from Adversarial Attacks

2019-06-27 14:12:52
Danilo Vasconcellos Vargas, Shashank Kotyan

Abstract

Deep neural networks were shown to misclassify slightly modified input images. Recently, many defenses have been proposed but none have improved consistently the robustness of neural networks. Here, we propose to use attacks as a function evaluation to automatically search for architectures that can resist such attacks. Experiments on neural architecture search algorithms from the literature show that although their accurate results, they are not able to find robust architectures. Most of the reason for this lies in their limited search space. By creating a novel neural architecture search with options for dense layers to connect with convolution layers and vice-versa as well as the addition of multiplication, addition and concatenation layers in the search space, we were able to evolve an architecture that is $58\%$ accurate on adversarial samples. Interestingly, this inherent robustness of the evolved architecture rivals state-of-the-art defenses such as adversarial training while being trained only on the training dataset. Moreover, the evolved architecture makes use of some peculiar traits which might be useful for developing even more robust ones. Thus, the results here demonstrate that more robust architectures exist as well as opens up a new range of possibilities for the development and exploration of deep neural networks using automatic architecture search. Code available at <a href="http://bit.ly/RobustArchitectureSearch.">this http URL</a>

Abstract (translated)

URL

https://arxiv.org/abs/1906.11667

PDF

https://arxiv.org/pdf/1906.11667.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot