Abstract
Exploiting both audio and visual modalities for video classification is a challenging task, as the existing methods require large model architectures, leading to high computational complexity and resource requirements. Smaller architectures, on the other hand, struggle to achieve optimal performance. In this paper, we propose Attend-Fusion, an audio-visual (AV) fusion approach that introduces a compact model architecture specifically designed to capture intricate audio-visual relationships in video data. Through extensive experiments on the challenging YouTube-8M dataset, we demonstrate that Attend-Fusion achieves an F1 score of 75.64\% with only 72M parameters, which is comparable to the performance of larger baseline models such as Fully-Connected Late Fusion (75.96\% F1 score, 341M parameters). Attend-Fusion achieves similar performance to the larger baseline model while reducing the model size by nearly 80\%, highlighting its efficiency in terms of model complexity. Our work demonstrates that the Attend-Fusion model effectively combines audio and visual information for video classification, achieving competitive performance with significantly reduced model size. This approach opens new possibilities for deploying high-performance video understanding systems in resource-constrained environments across various applications.
Abstract (translated)
利用音频和视频模态进行视频分类是一个具有挑战性的任务,因为现有的方法需要大型模型架构,导致高计算复杂度和资源需求。较小的架构则很难实现最优性能。在本文中,我们提出了Attend-Fusion,一种专为捕捉视频数据中复杂的音频-视觉关系而设计的音频-视觉(AV)融合方法。通过对具有挑战性的YouTube-8M数据集的广泛实验,我们证明了Attend-Fusion达到75.64\%的F1得分,仅使用72M参数,与具有类似性能的大型基线模型(如Fully-Connected Late Fusion,75.96\% F1 score,341M parameters)相当。Attend-Fusion在大型基线模型的同时减小了模型大小,凸显了其在模型复杂度方面的效率。我们的工作表明,Attend-Fusion模型能够有效地结合音频和视频信息进行视频分类,实现与显著减小模型大小相当的竞争性能。这种方法为在各种应用环境中部署高效的视频理解系统提供了新的可能性。
URL
https://arxiv.org/abs/2408.14441