Paper Reading AI Learner

Evaluating the precision of the HTC VIVE Ultimate Tracker with robotic and human movements under varied environmental conditions

2024-09-04 09:34:25
Julian Kulozik, Nathana\"el Jarrass\'e

Abstract

The HTC VIVE Ultimate Tracker, utilizing inside-out tracking with internal stereo cameras providing 6 DoF tracking without external cameras, offers a cost-efficient and straightforward setup for motion tracking. Initially designed for the gaming and VR industry, we explored its application beyond VR, providing source code for data capturing in both C++ and Python without requiring a VR headset. This study is the first to evaluate the tracker's precision across various experimental scenarios. To assess the robustness of the tracking precision, we employed a robotic arm as a precise and repeatable source of motion. Using the OptiTrack system as a reference, we conducted tests under varying experimental conditions: lighting, movement velocity, environmental changes caused by displacing objects in the scene, and human movement in front of the trackers, as well as varying the displacement size relative to the calibration center. On average, the HTC VIVE Ultimate Tracker achieved a precision of 4.98 mm +/- 4 mm across various conditions. The most critical factors affecting accuracy were lighting conditions, movement velocity, and range of motion relative to the calibration center. For practical evaluation, we captured human movements with 5 trackers in realistic motion capture scenarios. Our findings indicate sufficient precision for capturing human movements, validated through two tasks: a low-dynamic pick-and-place task and high-dynamic fencing movements performed by an elite athlete. Even though its precision is lower than that of conventional fixed-camera-based motion capture systems and its performance is influenced by several factors, the HTC VIVE Ultimate Tracker demonstrates adequate accuracy for a variety of motion tracking applications. Its ability to capture human or object movements outside of VR or MOCAP environments makes it particularly versatile.

Abstract (translated)

HTC VIVE Ultimate Tracker使用内部立体摄像头提供6DoF跟踪,无需外部相机,为运动追踪提供成本效益明显且简单易用的设置。最初是为游戏和VR行业而设计的,我们探讨了其除VR外的应用,为数据捕捉提供了C++和Python源代码,无需使用VR头盔。这项研究是首次评估跟踪器在各种实验场景中的精确度。为了评估跟踪精确度,我们使用机器人手臂作为精确且可重复的运动来源。使用OptiTrack系统作为参考,我们进行了不同实验条件下的测试:光照条件、运动速度、由物体移动场景引起的環境变化以及跟踪器前的人体运动,以及与校准中心相对的位移大小的变化。平均而言,HTC VIVE Ultimate Tracker在各种条件下实现了4.98mm +/- 4mm的精度。对精度起最大影响的主要因素是光照条件、运动速度以及与校准中心相对的位移大小。为了实际评估,我们在现实的运动捕捉场景中使用5个跟踪器捕捉人类运动。我们的研究结果表明,该跟踪器具有足够的精度来捕捉人类运动,并通过两个任务进行了验证:一个低动态捡选和放置任务,以及一个由精英运动员执行的高动态击球动作。尽管其精度低于传统固定相机运动捕捉系统,且性能受多种因素影响,但HTC VIVE Ultimate Tracker在各种运动追踪应用中表现出了足够的精度。它能够捕捉人类或物体运动超出VR或MOCAP环境的能力使其特别具有多功能性。

URL

https://arxiv.org/abs/2409.01947

PDF

https://arxiv.org/pdf/2409.01947.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model LLM Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Robot Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Time_Series Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot