Paper Reading AI Learner

A Survey of Pruning Methods for Efficient Person Re-identification Across Domains

2019-07-04 18:02:53
Hugo Masson, Amran Bhuiyan, Le Thanh Nguyen-Meidine, Mehrsan Javan, Parthipan Siva, Ismail Ben Ayed, Eric Granger

Abstract

Recent years have witnessed a substantial increase in the deep learning architectures proposed for visual recognition tasks like person re-identification, where individuals must be recognized over multiple distributed cameras. Although deep Siamese networks have greatly improved the state-of-the-art accuracy, the computational complexity of the CNNs used for feature extraction remains an issue, hindering their deployment on platforms with with limited resources, or in applications with real-time constraints. Thus, there is an obvious advantage to compressing these architectures without significantly decreasing their accuracy. This paper provides a survey of state-of-the-art pruning techniques that are suitable for compressing deep Siamese networks applied to person re-identification. These techniques are analysed according to their pruning criteria and strategy, and according to different design scenarios for exploiting pruning methods to fine-tuning networks for target applications. Experimental results obtained using Siamese networks with ResNet feature extractors, and multiple benchmarks re-identification datasets, indicate that pruning can considerably reduce network complexity while maintaining a high level of accuracy. In scenarios where pruning is performed with large pre-training or fine-tuning datasets, the number of FLOPS required by the ResNet feature extractor is reduced by half, while maintaining a comparable rank-1 accuracy (within 1\% of the original model). Pruning while training a larger CNNs can also provide a significantly better performance than fine-tuning smaller ones.

Abstract (translated)

URL

https://arxiv.org/abs/1907.02547

PDF

https://arxiv.org/pdf/1907.02547.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot