Paper Reading AI Learner

LML: Language Model Learning a Dataset for Data-Augmented Prediction

2024-09-27 17:58:50
Praneeth Vadlapati

Abstract

This paper introduces a new approach to using Large Language Models (LLMs) for classification tasks, which are typically handled using Machine Learning (ML) models. Unlike ML models that rely heavily on data cleaning and feature engineering, this method streamlines the process using LLMs. This paper proposes a new concept called "Language Model Learning (LML)" powered by a new method called "Data-Augmented Prediction (DAP)". The classification is performed by LLMs using a method similar to humans manually exploring and understanding the data and deciding classifications using data as a reference. Training data is summarized and evaluated to determine the features that lead to the classification of each label the most. In the process of DAP, the system uses the data summary to automatically create a query, which is used to retrieve relevant rows from the dataset. A classification is generated by the LLM using data summary and relevant rows, ensuring satisfactory accuracy even with complex data. Usage of data summary and similar data in DAP ensures context-aware decision-making. The proposed method uses the words "Act as an Explainable Machine Learning Model" in the prompt to enhance the interpretability of the predictions by allowing users to review the logic behind each prediction. In some test cases, the system scored an accuracy above 90%, proving the effectiveness of the system and its potential to outperform conventional ML models in various scenarios. The code is available at this https URL

Abstract (translated)

本文提出了一种使用大型语言模型(LLMs)进行分类任务的新方法,通常使用机器学习(ML)模型处理。与依赖大量数据清洗和特征工程的ML模型不同,这种方法通过LLMs简化处理过程。本文提出了一种名为“语言模型学习(LML)”的新概念,由一种名为“数据增强预测(DAP)”的新方法驱动。分类是通过LLMs使用类似于人类手动探索和理解数据并使用数据作为参考的方法进行的。训练数据被总结和评估,以确定导致每个标签分类的最相关的特征。在DAP的过程中,系统使用数据概要自动创建查询,用于从数据集中检索相关行。LLM使用数据概要和相关行生成分类,确保在复杂数据情况下具有满意的准确度。使用数据概要和类似数据在DAP中确保了上下文感知决策。所提出的方法使用提示中的“作为可解释的机器学习模型”一词来增强预测的可解释性,使用户能够查看每个预测的逻辑。在某些测试用例中,系统的准确性超过90%,证明了系统的有效性和其在各种场景中超越传统ML模型的潜力。代码可在此处访问:https://www.example.com/

URL

https://arxiv.org/abs/2409.18957

PDF

https://arxiv.org/pdf/2409.18957.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model LLM Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Robot Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Time_Series Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot