Paper Reading AI Learner

Unsupervised Low-light Image Enhancement with Lookup Tables and Diffusion Priors

2024-09-27 16:37:27
Yunlong Lin, Zhenqi Fu, Kairun Wen, Tian Ye, Sixiang Chen, Ge Meng, Yingying Wang, Yue Huang, Xiaotong Tu, Xinghao Ding

Abstract

Low-light image enhancement (LIE) aims at precisely and efficiently recovering an image degraded in poor illumination environments. Recent advanced LIE techniques are using deep neural networks, which require lots of low-normal light image pairs, network parameters, and computational resources. As a result, their practicality is limited. In this work, we devise a novel unsupervised LIE framework based on diffusion priors and lookup tables (DPLUT) to achieve efficient low-light image recovery. The proposed approach comprises two critical components: a light adjustment lookup table (LLUT) and a noise suppression lookup table (NLUT). LLUT is optimized with a set of unsupervised losses. It aims at predicting pixel-wise curve parameters for the dynamic range adjustment of a specific image. NLUT is designed to remove the amplified noise after the light brightens. As diffusion models are sensitive to noise, diffusion priors are introduced to achieve high-performance noise suppression. Extensive experiments demonstrate that our approach outperforms state-of-the-art methods in terms of visual quality and efficiency.

Abstract (translated)

低光图像增强(LIE)旨在精确有效地恢复在欠光照环境下受损的图像。最近,先进的LIE技术采用深度神经网络,这需要大量的低正常光图像对、网络参数和计算资源。因此,它们的实用性受到限制。在本文中,我们提出了一种基于扩散优先权和查找表(DPLUT)的新型无监督LIE框架,以实现高效的低光图像恢复。所提出的方法包括两个关键组件:一个光调整查找表(LLUT)和一个噪声抑制查找表(NLUT)。LLUT通过一系列无监督损失进行优化。它旨在预测特定图像的动态范围调整过程中的像素级曲线参数。NLUT在光变亮后设计用于消除放大噪声。由于扩散模型对噪声敏感,我们引入了扩散优先权来实现高性能的噪声抑制。大量实验证明,我们的方法在视觉质量和效率方面超过了最先进的方法。

URL

https://arxiv.org/abs/2409.18899

PDF

https://arxiv.org/pdf/2409.18899.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model LLM Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Robot Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Time_Series Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot