Paper Reading AI Learner

Learning Probabilities: Towards a Logic of Statistical Learning

2019-07-22 03:13:04
Alexandru Baltag, Soroush Rafiee Rad, Sonja Smets

Abstract

We propose a new model for forming beliefs and learning about unknown probabilities (such as the probability of picking a red marble from a bag with an unknown distribution of coloured marbles). The most widespread model for such situations of 'radical uncertainty' is in terms of imprecise probabilities, i.e. representing the agent's knowledge as a set of probability measures. We add to this model a plausibility map, associating to each measure a plausibility number, as a way to go beyond what is known with certainty and represent the agent's beliefs about probability. There are a number of standard examples: Shannon Entropy, Centre of Mass etc. We then consider learning of two types of information: (1) learning by repeated sampling from the unknown distribution (e.g. picking marbles from the bag); and (2) learning higher-order information about the distribution (in the shape of linear inequalities, e.g. we are told there are more red marbles than green marbles). The first changes only the plausibility map (via a 'plausibilistic' version of Bayes' Rule), but leaves the given set of measures unchanged; the second shrinks the set of measures, without changing their plausibility. Beliefs are defined as in Belief Revision Theory, in terms of truth in the most plausible worlds. But our belief change does not comply with standard AGM axioms, since the revision induced by (1) is of a non-AGM type. This is essential, as it allows our agents to learn the true probability: we prove that the beliefs obtained by repeated sampling converge almost surely to the correct belief (in the true probability). We end by sketching the contours of a dynamic doxastic logic for statistical learning.

Abstract (translated)

URL

https://arxiv.org/abs/1907.09472

PDF

https://arxiv.org/pdf/1907.09472.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot