Paper Reading AI Learner

FreeGaussian: Guidance-free Controllable 3D Gaussian Splats with Flow Derivatives

2024-10-29 14:29:21
Qizhi Chen, Delin Qu, Yiwen Tang, Haoming Song, Yiting Zhang, Dong Wang, Bin Zhao, Xuelong Li

Abstract

Reconstructing controllable Gaussian splats from monocular video is a challenging task due to its inherently insufficient constraints. Widely adopted approaches supervise complex interactions with additional masks and control signal annotations, limiting their real-world applications. In this paper, we propose an annotation guidance-free method, dubbed FreeGaussian, that mathematically derives dynamic Gaussian motion from optical flow and camera motion using novel dynamic Gaussian constraints. By establishing a connection between 2D flows and 3D Gaussian dynamic control, our method enables self-supervised optimization and continuity of dynamic Gaussian motions from flow priors. Furthermore, we introduce a 3D spherical vector controlling scheme, which represents the state with a 3D Gaussian trajectory, thereby eliminating the need for complex 1D control signal calculations and simplifying controllable Gaussian modeling. Quantitative and qualitative evaluations on extensive experiments demonstrate the state-of-the-art visual performance and control capability of our method. Project page: this https URL.

Abstract (translated)

从单目视频中重构可控制的高斯斑点是一个具有挑战性的任务,因为其内在的约束条件不足。广泛采用的方法通过添加额外的掩码和控制信号注释来监督复杂交互,这限制了它们在现实世界中的应用。在这篇论文中,我们提出了一种无需标注指导的方法,称为FreeGaussian,它利用新颖的动态高斯约束从光流和相机运动中数学推导出动态高斯运动。通过建立2D流与3D高斯动态控制之间的联系,我们的方法实现了自我监督优化,并使动态高斯运动具有连续性。此外,我们引入了一种三维球形向量控制方案,该方案用一个3D高斯轨迹来表示状态,从而消除了对复杂的一维控制信号计算的需求,并简化了可控制的高斯模型建立过程。大量的实验定量和定性的评估表明,我们的方法具有最先进的视觉性能和控制能力。项目页面:这个 https URL。

URL

https://arxiv.org/abs/2410.22070

PDF

https://arxiv.org/pdf/2410.22070.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model LLM Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Robot Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Time_Series Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot