Abstract
Imitation learning from human demonstrations is an effective means to teach robots manipulation skills. But data acquisition is a major bottleneck in applying this paradigm more broadly, due to the amount of cost and human effort involved. There has been significant interest in imitation learning for bimanual dexterous robots, like humanoids. Unfortunately, data collection is even more challenging here due to the challenges of simultaneously controlling multiple arms and multi-fingered hands. Automated data generation in simulation is a compelling, scalable alternative to fuel this need for data. To this end, we introduce DexMimicGen, a large-scale automated data generation system that synthesizes trajectories from a handful of human demonstrations for humanoid robots with dexterous hands. We present a collection of simulation environments in the setting of bimanual dexterous manipulation, spanning a range of manipulation behaviors and different requirements for coordination among the two arms. We generate 21K demos across these tasks from just 60 source human demos and study the effect of several data generation and policy learning decisions on agent performance. Finally, we present a real-to-sim-to-real pipeline and deploy it on a real-world humanoid can sorting task. Videos and more are at this https URL
Abstract (translated)
从人类演示中进行模仿学习是一种有效的教授机器人操作技能的方法。但是,数据获取是应用这一范式的一个主要瓶颈,因为这涉及大量的成本和人力投入。对于双臂灵巧机器人(如类人机器人)的模仿学习引起了广泛的兴趣。不幸的是,在这里收集数据更加具有挑战性,因为在同时控制多个手臂和多指手方面存在困难。在模拟中自动生成数据是一种令人信服且可扩展的替代方案,以满足对数据的需求。为此,我们介绍了DexMimicGen,这是一个大规模自动数据生成系统,可以从少量的人类演示中为配备灵巧手的类人机器人合成轨迹。我们在双臂灵巧操作的背景下介绍了一系列模拟环境,涵盖了多种操控行为以及两臂之间不同协调要求的情况。我们从60个源人类演示中生成了21K个示范,并研究了几种数据生成和策略学习决策对代理性能的影响。最后,我们提出了一条实-模-实管道,并将其部署在现实世界中的类人罐子分类任务上。更多视频和其他内容请参见此链接:[https URL]
URL
https://arxiv.org/abs/2410.24185