Paper Reading AI Learner

Show Me What and Where has Changed? Question Answering and Grounding for Remote Sensing Change Detection

2024-10-31 11:20:13
Ke Li, Fuyu Dong, Di Wang, Shaofeng Li, Quan Wang, Xinbo Gao, Tat-Seng Chua

Abstract

Remote sensing change detection aims to perceive changes occurring on the Earth's surface from remote sensing data in different periods, and feed these changes back to humans. However, most existing methods only focus on detecting change regions, lacking the ability to interact with users to identify changes that the users expect. In this paper, we introduce a new task named Change Detection Question Answering and Grounding (CDQAG), which extends the traditional change detection task by providing interpretable textual answers and intuitive visual evidence. To this end, we construct the first CDQAG benchmark dataset, termed QAG-360K, comprising over 360K triplets of questions, textual answers, and corresponding high-quality visual masks. It encompasses 10 essential land-cover categories and 8 comprehensive question types, which provides a large-scale and diverse dataset for remote sensing applications. Based on this, we present VisTA, a simple yet effective baseline method that unifies the tasks of question answering and grounding by delivering both visual and textual answers. Our method achieves state-of-the-art results on both the classic CDVQA and the proposed CDQAG datasets. Extensive qualitative and quantitative experimental results provide useful insights for the development of better CDQAG models, and we hope that our work can inspire further research in this important yet underexplored direction. The proposed benchmark dataset and method are available at this https URL.

Abstract (translated)

遥感变化检测旨在从不同时间段的遥感数据中感知地球表面的变化,并将这些变化反馈给人类。然而,大多数现有的方法只专注于检测变化区域,缺乏与用户交互以识别用户期望变化的能力。本文介绍了一个新任务——变化检测问答及定位(Change Detection Question Answering and Grounding, CDQAG),该任务通过提供可解释的文本答案和直观的视觉证据扩展了传统的变化检测任务。为此,我们构建了第一个CDQAG基准数据集QAG-360K,包含超过36万组问题、文本答案及对应高质量视觉掩码的三元组。这个数据集涵盖了10种基本的地表覆盖类别和8种全面的问题类型,为遥感应用提供了一个大规模且多样的数据集。基于此,我们提出了VisTA方法,这是一种简单而有效的基线方法,通过同时给出视觉和文本答案来统一问答和定位任务。我们的方法在经典CDVQA数据集和提出的CDQAG数据集上均达到了最先进的结果。广泛的质量和数量实验提供了开发更好CDQAG模型的有用见解,并希望我们的工作能够激发在这个重要但尚未充分探索的方向上的进一步研究。我们提出的基准数据集和方法可在以下链接获取:[此 https URL]。

URL

https://arxiv.org/abs/2410.23828

PDF

https://arxiv.org/pdf/2410.23828.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model LLM Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Robot Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Time_Series Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot