Paper Reading AI Learner

HoloChrome: Polychromatic Illumination for Speckle Reduction in Holographic Near-Eye Displays

2024-10-31 17:05:44
Florian Schiffers, Grace Kuo, Nathan Matsuda, Douglas Lanman, Oliver Cossairt

Abstract

Holographic displays hold the promise of providing authentic depth cues, resulting in enhanced immersive visual experiences for near-eye applications. However, current holographic displays are hindered by speckle noise, which limits accurate reproduction of color and texture in displayed images. We present HoloChrome, a polychromatic holographic display framework designed to mitigate these limitations. HoloChrome utilizes an ultrafast, wavelength-adjustable laser and a dual-Spatial Light Modulator (SLM) architecture, enabling the multiplexing of a large set of discrete wavelengths across the visible spectrum. By leveraging spatial separation in our dual-SLM setup, we independently manipulate speckle patterns across multiple wavelengths. This novel approach effectively reduces speckle noise through incoherent averaging achieved by wavelength multiplexing. Our method is complementary to existing speckle reduction techniques, offering a new pathway to address this challenge. Furthermore, the use of polychromatic illumination broadens the achievable color gamut compared to traditional three-color primary holographic displays. Our simulations and tabletop experiments validate that HoloChrome significantly reduces speckle noise and expands the color gamut. These advancements enhance the performance of holographic near-eye displays, moving us closer to practical, immersive next-generation visual experiences.

Abstract (translated)

全息显示器有望提供真实深度线索,从而为近距离应用带来增强的沉浸式视觉体验。然而,当前的全息显示器受到散斑噪声的限制,这限制了显示图像中颜色和纹理的准确再现。我们提出了HoloChrome,这是一个旨在减轻这些限制的多色全息显示框架。HoloChrome利用超快、可调波长激光以及双空间光调制器(SLM)架构,能够在可见光谱范围内复用大量离散波长。通过我们在双SLM设置中使用的空间分离技术,我们可以在多个波长上独立操纵散斑图案。这一新颖方法通过波长复用实现的非相干平均有效减少了散斑噪声。我们的方法与现有的减少散斑的技术相辅相成,为解决这一挑战提供了一条新的途径。此外,多色照明的应用拓宽了可实现的颜色范围,相比传统的三基色全息显示器有所扩展。我们的模拟和桌面实验验证了HoloChrome显著降低了散斑噪声并扩大了颜色范围。这些进展提升了全息近眼显示器的性能,使我们更接近于实现实用的、沉浸式的下一代视觉体验。

URL

https://arxiv.org/abs/2410.24144

PDF

https://arxiv.org/pdf/2410.24144.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model LLM Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Robot Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Time_Series Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot