Paper Reading AI Learner

GPT or BERT: why not both?

2024-10-31 17:18:11
Lucas Georges Gabriel Charpentier, David Samuel

Abstract

We present a simple way to merge masked language modeling with causal language modeling. This hybrid training objective results in a model that combines the strengths of both modeling paradigms within a single transformer stack: GPT-BERT can be transparently used like any standard causal or masked language model. We test the pretraining process that enables this flexible behavior on the BabyLM Challenge 2024. The results show that the hybrid pretraining outperforms masked-only or causal-only models. We openly release the models, training corpora and code.

Abstract (translated)

我们提出了一种将掩码语言模型与因果语言模型相结合的简单方法。这种混合训练目标产生了一个能够在单一变压器堆栈中结合两种建模范式优势的模型:GPT-BERT 可以像任何标准的因果或掩码语言模型一样透明地使用。我们在 BabyLM 挑战 2024 中测试了能够实现这一灵活行为的预训练过程。结果表明,混合预训练优于仅使用掩码或仅使用因果模型的方法。我们公开发布了这些模型、训练语料库和代码。

URL

https://arxiv.org/abs/2410.24159

PDF

https://arxiv.org/pdf/2410.24159.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model LLM Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Robot Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Time_Series Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot