Paper Reading AI Learner

Fairness-Utilization Trade-off in Wireless Networks with Explainable Kolmogorov-Arnold Networks

2024-11-04 09:40:47
Masoud Shokrnezhad, Hamidreza Mazandarani, Tarik Taleb

Abstract

The effective distribution of user transmit powers is essential for the significant advancements that the emergence of 6G wireless networks brings. In recent studies, Deep Neural Networks (DNNs) have been employed to address this challenge. However, these methods frequently encounter issues regarding fairness and computational inefficiency when making decisions, rendering them unsuitable for future dynamic services that depend heavily on the participation of each individual user. To address this gap, this paper focuses on the challenge of transmit power allocation in wireless networks, aiming to optimize $\alpha$-fairness to balance network utilization and user equity. We introduce a novel approach utilizing Kolmogorov-Arnold Networks (KANs), a class of machine learning models that offer low inference costs compared to traditional DNNs through superior explainability. The study provides a comprehensive problem formulation, establishing the NP-hardness of the power allocation problem. Then, two algorithms are proposed for dataset generation and decentralized KAN training, offering a flexible framework for achieving various fairness objectives in dynamic 6G environments. Extensive numerical simulations demonstrate the effectiveness of our approach in terms of fairness and inference cost. The results underscore the potential of KANs to overcome the limitations of existing DNN-based methods, particularly in scenarios that demand rapid adaptation and fairness.

Abstract (translated)

有效的用户传输功率分配对于实现6G无线网络带来的重大进展至关重要。在最近的研究中,深度神经网络(DNN)已被用来解决这一挑战。然而,这些方法在做决策时经常遇到公平性和计算效率低下的问题,这使得它们不适合未来依赖每个个体用户参与的动态服务。为了解决这个差距,本文专注于无线网络中的传输功率分配挑战,旨在通过优化$\alpha$-公平性来平衡网络利用率和用户体验公平性。我们提出了一种新颖的方法,利用Kolmogorov-Arnold网络(KANs),这是一类机器学习模型,与传统的DNN相比,它们提供了更低的推理成本,并具有更好的可解释性。该研究提供了一个全面的问题定义,确立了功率分配问题的NP-hard性质。接着,提出了两个算法用于数据集生成和分散式KAN训练,为在动态6G环境中实现多种公平目标提供了一个灵活框架。大量的数值模拟证明了我们在公平性和推理成本方面的有效性。结果强调了KANs克服现有DNN方法限制的潜力,特别是在需要快速适应和保证公平性的场景中。

URL

https://arxiv.org/abs/2411.01924

PDF

https://arxiv.org/pdf/2411.01924.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model LLM Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Robot Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Time_Series Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot