Paper Reading AI Learner

Automatic Text Line Segmentation Directly in JPEG Compressed Document Images

2019-07-29 05:32:31
Bulla Rajesh, Mohammed Javed, P Nagabhushan

Abstract

JPEG is one of the popular image compression algorithms that provide efficient storage and transmission capabilities in consumer electronics, and hence it is the most preferred image format over the internet world. In the present digital and Big-data era, a huge volume of JPEG compressed document images are being archived and communicated through consumer electronics on daily basis. Though it is advantageous to have data in the compressed form on one side, however, on the other side processing with off-the-shelf methods becomes computationally expensive because it requires decompression and recompression operations. Therefore, it would be novel and efficient, if the compressed data are processed directly in their respective compressed domains of consumer electronics. In the present research paper, we propose to demonstrate this idea taking the case study of printed text line segmentation. Since, JPEG achieves compression by dividing the image into non overlapping 8x8 blocks in the pixel domain and using Discrete Cosine Transform (DCT); it is very likely that the partitioned 8x8 DCT blocks overlap the contents of two adjacent text-lines without leaving any clue for the line separator, thus making text-line segmentation a challenging problem. Two approaches of segmentation have been proposed here using the DC projection profile and AC coefficients of each 8x8 DCT block. The first approach is based on the strategy of partial decompression of selected DCT blocks, and the second approach is with intelligent analysis of F10 and F11 AC coefficients and without using any type of decompression. The proposed methods have been tested with variable font sizes, font style and spacing between lines, and a good performance is reported.

Abstract (translated)

URL

https://arxiv.org/abs/1907.12219

PDF

https://arxiv.org/pdf/1907.12219.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot