Paper Reading AI Learner

Artistic Domain Generalisation Methods are Limited by their Deep Representations

2019-07-29 20:06:41
Padraig Boulton, Peter Hall

Abstract

The cross-depiction problem refers to the task of recognising visual objects regardless of their depictions; whether photographed, painted, sketched, {\em etc}. In the past, some researchers considered cross-depiction to be domain adaptation (DA). More recent work considers cross-depiction as domain generalisation (DG), in which algorithms extend recognition from one set of domains (such as photographs and coloured artwork) to another (such as sketches). We show that fixing the last layer of AlexNet to random values provides a performance comparable to state of the art DA and DG algorithms, when tested over the PACS benchmark. With support from background literature, our results lead us to conclude that texture alone is insufficient to support generalisation; rather, higher-order representations such as structure and shape are necessary.

Abstract (translated)

URL

https://arxiv.org/abs/1907.12622

PDF

https://arxiv.org/pdf/1907.12622.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot