Paper Reading AI Learner

Weakly Supervised Object Localization using Min-Max Entropy: an Interpretable Framework

2019-07-25 00:51:18
Soufiane Belharbi, Jérôme Rony, Jose Dolz, Ismail Ben Ayed, Luke McCaffrey, Eric Granger

Abstract

Weakly supervised object localization (WSOL) models aim to locate objects of interest in an image after being trained only on data with coarse image level labels. Deep learning models for WSOL rely typically on convolutional attention maps with no constraints on the regions of interest which allows them to select any region, making them vulnerable to false positive regions. This issue occurs in many application domains, e.g., medical image analysis, where interpretability is central to the prediction. In order to improve the localization reliability, we propose a deep learning framework for WSOL with pixel level localization. It is composed of two sequential sub-networks: a localizer that localizes regions of interest; followed by a classifier that classifies them. Within its end-to-end training, we incorporate the prior knowledge stating that in an agnostic-class setup an image is more likely to contain relevant --object of interest-- and irrelevant regions --noise--. Based on the conditional entropy (CE) measured at the classifier, the localizer is driven to spot relevant regions (low CE), and irrelevant regions (high CE). Our framework is able to recover large discriminative regions using our recursive erasing algorithm that we incorporate within the backpropagation during training. Moreover, the framework handles intrinsically multi-instances. Experimental results on public datasets with medical images (GlaS colon cancer) and natural images (Caltech-UCSD Birds-200-2011) show that, compared to state of the art WSOL methods, our framework can provide significant improvements in terms of image-level classification, pixel-level localization, and robustness to overfitting when dealing with few training samples. A public reproducible PyTorch implementation is provided in: https://github.com/sbelharbi/wsol-min-max-entropy-interpretability .

Abstract (translated)

URL

https://arxiv.org/abs/1907.12934

PDF

https://arxiv.org/pdf/1907.12934.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot