Paper Reading AI Learner

Rethinking Top Probability from Multi-view for Distracted Driver Behaviour Localization

2024-11-19 14:18:02
Quang Vinh Nguyen, Vo Hoang Thanh Son, Chau Truong Vinh Hoang, Duc Duy Nguyen, Nhat Huy Nguyen Minh, Soo-Hyung Kim

Abstract

Naturalistic driving action localization task aims to recognize and comprehend human behaviors and actions from video data captured during real-world driving scenarios. Previous studies have shown great action localization performance by applying a recognition model followed by probability-based post-processing. Nevertheless, the probabilities provided by the recognition model frequently contain confused information causing challenge for post-processing. In this work, we adopt an action recognition model based on self-supervise learning to detect distracted activities and give potential action probabilities. Subsequently, a constraint ensemble strategy takes advantages of multi-camera views to provide robust predictions. Finally, we introduce a conditional post-processing operation to locate distracted behaviours and action temporal boundaries precisely. Experimenting on test set A2, our method obtains the sixth position on the public leaderboard of track 3 of the 2024 AI City Challenge.

Abstract (translated)

自然驾驶行为定位任务旨在从真实世界驾驶场景中捕获的视频数据中识别和理解人类的行为和动作。先前的研究表明,通过应用一个识别模型并结合基于概率的后处理可以实现出色的动作定位性能。然而,识别模型提供的概率往往包含混淆信息,给后处理带来挑战。在这项工作中,我们采用了一个基于自监督学习的动作识别模型来检测分心活动并提供潜在的行为概率。随后,一种约束集成策略利用多摄像机视角的优势提供了稳健的预测。最后,我们引入了一种条件后处理操作以精确地定位分心行为和动作的时间边界。在测试集A2上的实验中,我们的方法在2024年AI城市挑战赛第3赛道的公共排行榜上获得了第六名的位置。

URL

https://arxiv.org/abs/2411.12525

PDF

https://arxiv.org/pdf/2411.12525.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model LLM Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Robot Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Time_Series Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot