Paper Reading AI Learner

A Pipeline of Neural-Symbolic Integration to Enhance Spatial Reasoning in Large Language Models

2024-11-27 18:04:05
Rong Wang, Kun Sun, Jonas Kuhn

Abstract

Large Language Models (LLMs) have demonstrated impressive capabilities across various tasks. However, LLMs often struggle with spatial reasoning which is one essential part of reasoning and inference and requires understanding complex relationships between objects in space. This paper proposes a novel neural-symbolic framework that enhances LLMs' spatial reasoning abilities. We evaluate our approach on two benchmark datasets: StepGame and SparQA, implementing three distinct strategies: (1) ASP (Answer Set Programming)-based symbolic reasoning, (2) LLM + ASP pipeline using DSPy, and (3) Fact + Logical rules. Our experiments demonstrate significant improvements over the baseline prompting methods, with accuracy increases of 40-50% on StepGame} dataset and 3-13% on the more complex SparQA dataset. The "LLM + ASP" pipeline achieves particularly strong results on the tasks of Finding Relations (FR) and Finding Block (FB) questions, though performance varies across different question types. The impressive results suggest that while neural-symbolic approaches offer promising directions for enhancing spatial reasoning in LLMs, their effectiveness depends heavily on the specific task characteristics and implementation strategies. We propose an integrated, simple yet effective set of strategies using a neural-symbolic pipeline to boost spatial reasoning abilities in LLMs. This pipeline and its strategies demonstrate strong and broader applicability to other reasoning domains in LLMs, such as temporal reasoning, deductive inference etc.

Abstract (translated)

大型语言模型(LLMs)在各种任务中展现了令人印象深刻的能力,但它们往往在空间推理方面遇到困难。空间推理是推理和推断的一个重要部分,需要理解对象之间的复杂空间关系。本文提出了一种新颖的神经符号框架,旨在增强LLMs的空间推理能力。我们使用两个基准数据集StepGame和SparQA对我们的方法进行了评估,并实施了三种不同的策略:(1)基于答案集合编程(ASP)的符号推理,(2) 使用DSPy的“LLM + ASP”管道,以及(3)事实+逻辑规则。实验结果显示,与基线提示方法相比,我们的方法在StepGame数据集上的准确率提高了40-50%,而在更复杂的SparQA数据集上则提高了3-13%。“LLM + ASP”管道在“寻找关系(FR)”和“寻找方块(FB)”问题任务中表现出特别出色的结果,尽管不同问题类型的性能有所变化。这些显著结果表明,虽然神经符号方法为增强LLMs的空间推理提供了有前景的方向,但它们的有效性高度依赖于具体任务的特征及实施策略。我们提出了一套综合、简单且有效的策略,通过神经符号管道来提升LLMs的空间推理能力。此管道及其策略展示了在其他LLM推理领域(如时间推理和演绎推断等)中的强大应用潜力。

URL

https://arxiv.org/abs/2411.18564

PDF

https://arxiv.org/pdf/2411.18564.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model LLM Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Robot Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Time_Series Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot