Paper Reading AI Learner

Automated Literature Review Using NLP Techniques and LLM-Based Retrieval-Augmented Generation

2024-11-27 18:27:07
Nurshat Fateh Ali, Md. Mahdi Mohtasim, Shakil Mosharrof, T. Gopi Krishna

Abstract

This research presents and compares multiple approaches to automate the generation of literature reviews using several Natural Language Processing (NLP) techniques and retrieval-augmented generation (RAG) with a Large Language Model (LLM). The ever-increasing number of research articles provides a huge challenge for manual literature review. It has resulted in an increased demand for automation. Developing a system capable of automatically generating the literature reviews from only the PDF files as input is the primary objective of this research work. The effectiveness of several Natural Language Processing (NLP) strategies, such as the frequency-based method (spaCy), the transformer model (Simple T5), and retrieval-augmented generation (RAG) with Large Language Model (GPT-3.5-turbo), is evaluated to meet the primary objective. The SciTLDR dataset is chosen for this research experiment and three distinct techniques are utilized to implement three different systems for auto-generating the literature reviews. The ROUGE scores are used for the evaluation of all three systems. Based on the evaluation, the Large Language Model GPT-3.5-turbo achieved the highest ROUGE-1 score, 0.364. The transformer model comes in second place and spaCy is at the last position. Finally, a graphical user interface is created for the best system based on the large language model.

Abstract (translated)

这项研究介绍了并比较了使用多种自然语言处理(NLP)技术和检索增强生成(RAG)与大型语言模型(LLM)来自动生成文献综述的多个方法。不断增加的研究文章数量为手动撰写文献综述带来了巨大的挑战,从而增加了对自动化的需求。本研究工作的主要目标是开发一个系统,该系统仅需PDF文件作为输入即可自动生成文献综述。为了实现这一主要目标,评估了多种自然语言处理(NLP)策略的有效性,包括基于频率的方法(spaCy)、变换器模型(Simple T5),以及与大型语言模型(GPT-3.5-turbo)相结合的检索增强生成(RAG)。本研究实验选择了SciTLDR数据集,并利用三种不同的技术实现了三个不同系统以自动产生文献综述。使用ROUGE分数来评估所有三个系统的性能。根据评估结果,大型语言模型GPT-3.5-turbo获得了最高的ROUGE-1得分,为0.364。变换器模型排名第二,而spaCy则排在最后一位。最终,基于最佳的大型语言模型系统创建了一个图形用户界面。

URL

https://arxiv.org/abs/2411.18583

PDF

https://arxiv.org/pdf/2411.18583.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model LLM Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Robot Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Time_Series Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot