Paper Reading AI Learner

Memristive Nanowire Network for Energy Efficient Audio Classification: Pre-Processing-Free Reservoir Computing with Reduced Latency

2024-11-29 10:58:51
Akshaya Rajesh (nano-Macro Reliability Laboratory), Pavithra Ananthasubramanian (nano-Macro Reliability Laboratory), Nagarajan Raghavan (nano-Macro Reliability Laboratory), Ankush Kumar (nano-Macro Reliability Laboratory, Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttrakhand, 247667, India)

Abstract

Speech recognition is a key challenge in natural language processing, requiring low latency, efficient computation, and strong generalization for real-time applications. While software-based artificial neural networks (ANNs) excel at this task, they are computationally intensive and depend heavily on data pre-processing. Neuromorphic computing, with its low-latency and energy-efficient advantages, holds promise for audio classification. Memristive nanowire networks, combined with pre-processing techniques like Mel-Frequency Cepstrum Coefficient extraction, have been widely used for associative learning, but such pre-processing can be power-intensive, undermining latency benefits. This study pioneers the use of memristive and spatio-temporal properties of nanowire networks for audio signal classification without pre-processing. A nanowire network simulation is paired with three linear classifiers for 10-class MNIST audio classification and binary speaker generalization tests. The hybrid system achieves significant benefits: excellent data compression with only 3% of nanowire output utilized, a 10-fold reduction in computational latency, and up to 28.5% improved classification accuracy (using a logistic regression classifier). Precision and recall improve by 10% and 17% for multispeaker datasets, and by 24% and 17% for individual speaker datasets, compared to raw data this http URL work provides a foundational proof of concept for utilizing memristive nanowire networks (NWN) in edge-computing devices, showcasing their potential for efficient, real-time audio signal processing with reduced computational overhead and power consumption, and enabling the development of advanced neuromorphic computing solutions.

Abstract (translated)

URL

https://arxiv.org/abs/2411.19611

PDF

https://arxiv.org/pdf/2411.19611.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model LLM Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Robot Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Time_Series Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot