Paper Reading AI Learner

SPILDL: A Scalable and Parallel Inductive Learner in Description Logic

2024-12-01 14:33:37
Eyad Algahtani

Abstract

We present SPILDL, a Scalable and Parallel Inductive Learner in Description Logic (DL). SPILDL is based on the DL-Learner (the state of the art in DL-based ILP learning). As a DL-based ILP learner, SPILDL targets the $\mathcal{ALCQI}^{\mathcal{(D)}}$ DL language, and can learn DL hypotheses expressed as disjunctions of conjunctions (using the $\sqcup$ operator). Moreover, SPILDL's hypothesis language also incorporates the use of string concrete roles (also known as string data properties in the Web Ontology Language, OWL); As a result, this incorporation of powerful DL constructs, enables SPILDL to learn powerful DL-based hypotheses for describing many real-world complex concepts. SPILDL employs a hybrid parallel approach which combines both shared-memory and distributed-memory approaches, to accelerates ILP learning (for both hypothesis search and evaluation). According to experimental results, SPILDL's parallel search improved performance by up to $\sim$27.3 folds (best case). For hypothesis evaluation, SPILDL improved evaluation performance through HT-HEDL (our multi-core CPU + multi-GPU hypothesis evaluation engine), by up to 38 folds (best case). By combining both parallel search and evaluation, SPILDL improved performance by up to $\sim$560 folds (best case). In terms of worst case scenario, SPILDL's parallel search doesn't provide consistent speedups on all datasets, and is highly dependent on the search space nature of the ILP dataset. For some datasets, increasing the number of parallel search threads result in reduced performance, similar or worse than baseline. Some ILP datasets benefit from parallel search, while others don't (or the performance gains are negligible). In terms of parallel evaluation, on small datasets, parallel evaluation provide similar or worse performance than baseline.

Abstract (translated)

URL

https://arxiv.org/abs/2412.00830

PDF

https://arxiv.org/pdf/2412.00830.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model LLM Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Robot Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Time_Series Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot