Paper Reading AI Learner

DeepFGS: Fine-Grained Scalable Coding for Learned Image Compression

2024-11-30 11:19:38
Yongqi Zhai, Yi Ma, Luyang Tang, Wei Jiang, Ronggang Wang

Abstract

Scalable coding, which can adapt to channel bandwidth variation, performs well in today's complex network environment. However, most existing scalable compression methods face two challenges: reduced compression performance and insufficient scalability. To overcome the above problems, this paper proposes a learned fine-grained scalable image compression framework, namely DeepFGS. Specifically, we introduce a feature separation backbone to divide the image information into basic and scalable features, then redistribute the features channel by channel through an information rearrangement strategy. In this way, we can generate a continuously scalable bitstream via one-pass encoding. For entropy coding, we design a mutual entropy model to fully explore the correlation between the basic and scalable features. In addition, we reuse the decoder to reduce the parameters and computational complexity. Experiments demonstrate that our proposed DeepFGS outperforms previous learning-based scalable image compression models and traditional scalable image codecs in both PSNR and MS-SSIM metrics.

Abstract (translated)

URL

https://arxiv.org/abs/2412.00437

PDF

https://arxiv.org/pdf/2412.00437.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model LLM Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Robot Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Time_Series Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot