Paper Reading AI Learner

From Audio Deepfake Detection to AI-Generated Music Detection -- A Pathway and Overview

2024-11-30 19:53:23
Yupei Li, Manuel Milling, Lucia Specia, Bj\"orn W. Schuller

Abstract

As Artificial Intelligence (AI) technologies continue to evolve, their use in generating realistic, contextually appropriate content has expanded into various domains. Music, an art form and medium for entertainment, deeply rooted into human culture, is seeing an increased involvement of AI into its production. However, the unregulated use of AI music generation (AIGM) tools raises concerns about potential negative impacts on the music industry, copyright and artistic integrity, underscoring the importance of effective AIGM detection. This paper provides an overview of existing AIGM detection methods. To lay a foundation to the general workings and challenges of AIGM detection, we first review general principles of AIGM, including recent advancements in deepfake audios, as well as multimodal detection techniques. We further propose a potential pathway for leveraging foundation models from audio deepfake detection to AIGM detection. Additionally, we discuss implications of these tools and propose directions for future research to address ongoing challenges in the field.

Abstract (translated)

URL

https://arxiv.org/abs/2412.00571

PDF

https://arxiv.org/pdf/2412.00571.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model LLM Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Robot Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Time_Series Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot