Paper Reading AI Learner

Gaussian Splatting Under Attack: Investigating Adversarial Noise in 3D Objects

2024-12-03 20:11:21
Abdurrahman Zeybey, Mehmet Ergezer, Tommy Nguyen

Abstract

3D Gaussian Splatting has advanced radiance field reconstruction, enabling high-quality view synthesis and fast rendering in 3D modeling. While adversarial attacks on object detection models are well-studied for 2D images, their impact on 3D models remains underexplored. This work introduces the Masked Iterative Fast Gradient Sign Method (M-IFGSM), designed to generate adversarial noise targeting the CLIP vision-language model. M-IFGSM specifically alters the object of interest by focusing perturbations on masked regions, degrading the performance of CLIP's zero-shot object detection capability when applied to 3D models. Using eight objects from the Common Objects 3D (CO3D) dataset, we demonstrate that our method effectively reduces the accuracy and confidence of the model, with adversarial noise being nearly imperceptible to human observers. The top-1 accuracy in original model renders drops from 95.4\% to 12.5\% for train images and from 91.2\% to 35.4\% for test images, with confidence levels reflecting this shift from true classification to misclassification, underscoring the risks of adversarial attacks on 3D models in applications such as autonomous driving, robotics, and surveillance. The significance of this research lies in its potential to expose vulnerabilities in modern 3D vision models, including radiance fields, prompting the development of more robust defenses and security measures in critical real-world applications.

Abstract (translated)

URL

https://arxiv.org/abs/2412.02803

PDF

https://arxiv.org/pdf/2412.02803.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model LLM Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Robot Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Time_Series Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot