Paper Reading AI Learner

Decentralized Mobile Target Tracking Using Consensus-Based Estimation with Nearly-Constant-Velocity Modeling

2024-12-04 07:48:50
Amir Ahmad Ghods, Mohammadreza Doostmohammadian

Abstract

Mobile target tracking is crucial in various applications such as surveillance and autonomous navigation. This study presents a decentralized tracking framework utilizing a Consensus-Based Estimation Filter (CBEF) integrated with the Nearly-Constant-Velocity (NCV) model to predict a moving target's state. The framework facilitates agents in a network to collaboratively estimate the target's position by sharing local observations and achieving consensus despite communication constraints and measurement noise. A saturation-based filtering technique is employed to enhance robustness by mitigating the impact of noisy sensor data. Simulation results demonstrate that the proposed method effectively reduces the Mean Squared Estimation Error (MSEE) over time, indicating improved estimation accuracy and reliability. The findings underscore the effectiveness of the CBEF in decentralized environments, highlighting its scalability and resilience in the presence of uncertainties.

Abstract (translated)

URL

https://arxiv.org/abs/2412.03095

PDF

https://arxiv.org/pdf/2412.03095.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model LLM Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Robot Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Time_Series Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot