Paper Reading AI Learner

Spinal ligaments detection on vertebrae meshes using registration and 3D edge detection

2024-12-06 14:39:06
Ivanna Kramer, Lara Blomenkamp, Kevin Weirauch, Sabine Bauer, Dietrich Paulus

Abstract

Spinal ligaments are crucial elements in the complex biomechanical simulation models as they transfer forces on the bony structure, guide and limit movements and stabilize the spine. The spinal ligaments encompass seven major groups being responsible for maintaining functional interrelationships among the other spinal components. Determination of the ligament origin and insertion points on the 3D vertebrae models is an essential step in building accurate and complex spine biomechanical models. In our paper, we propose a pipeline that is able to detect 66 spinal ligament attachment points by using a step-wise approach. Our method incorporates a fast vertebra registration that strategically extracts only 15 3D points to compute the transformation, and edge detection for a precise projection of the registered ligaments onto any given patient-specific vertebra model. Our method shows high accuracy, particularly in identifying landmarks on the anterior part of the vertebra with an average distance of 2.24 mm for anterior longitudinal ligament and 1.26 mm for posterior longitudinal ligament landmarks. The landmark detection requires approximately 3.0 seconds per vertebra, providing a substantial improvement over existing methods. Clinical relevance: using the proposed method, the required landmarks that represent origin and insertion points for forces in the biomechanical spine models can be localized automatically in an accurate and time-efficient manner.

Abstract (translated)

脊柱韧带是复杂生物力学模拟模型中的关键元素,因为它们传递骨骼结构上的力、引导和限制运动并稳定脊柱。脊柱韧带包括七个主要组群,负责维持与其他脊柱组件的功能性相互关系。确定3D椎骨模型上韧带的起点和止点是一个构建准确且复杂的脊柱生物力学模型的关键步骤。在我们的论文中,我们提出了一种能够通过逐步方法检测出66个脊柱韧带附着点的流水线。我们的方法结合了快速椎体配准,该配准策略性地仅提取15个3D点来计算变换,并使用边缘检测技术以精确投影注册后的韧带到任何给定的患者特异性椎骨模型上。我们的方法显示出高精度,特别是在识别椎骨前部标志点方面,平均距离为2.24毫米(对于前纵韧带)和1.26毫米(对于后纵韧带)。每个椎体的地标检测大约需要3.0秒,与现有方法相比提供了显著改进。临床相关性:使用我们提出的方法可以自动、准确且高效地定位代表生物力学脊柱模型中力的作用起点和止点所需的地标。

URL

https://arxiv.org/abs/2412.05081

PDF

https://arxiv.org/pdf/2412.05081.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model LLM Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Robot Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Time_Series Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot