Paper Reading AI Learner

Structural and Statistical Audio Texture Knowledge Distillation for Passive Sonar Classification

2025-01-03 17:45:12
Jarin Ritu, Amirmohammad Mohammadi, Davelle Carreiro, Alexandra Van Dine, Joshua Peeples

Abstract

Knowledge distillation has been successfully applied to various audio tasks, but its potential in underwater passive sonar target classification remains relatively unexplored. Existing methods often focus on high-level contextual information while overlooking essential low-level audio texture features needed to capture local patterns in sonar data. To address this gap, the Structural and Statistical Audio Texture Knowledge Distillation (SSATKD) framework is proposed for passive sonar target classification. SSATKD combines high-level contextual information with low-level audio textures by utilizing an Edge Detection Module for structural texture extraction and a Statistical Knowledge Extractor Module to capture signal variability and distribution. Experimental results confirm that SSATKD improves classification accuracy while optimizing memory and computational resources, making it well-suited for resource-constrained environments.

Abstract (translated)

知识蒸馏技术已经成功应用于各种音频任务,但在水下被动声纳目标分类领域的应用潜力尚有待开发。现有方法往往侧重于高层次的上下文信息,而忽视了捕捉声纳数据中局部模式所必需的基本低层次音频纹理特征。为解决这一问题,提出了结构和统计音频纹理知识蒸馏(SSATKD)框架用于被动声纳目标分类。SSATKD通过利用边缘检测模块提取结构化纹理,并采用统计知识抽取模块捕获信号的变化性和分布特性,将高层次的上下文信息与低层次的音频纹理相结合。实验结果证实,SSATKD在提高分类准确性的同时还能优化内存和计算资源,使其非常适合于资源受限的环境。

URL

https://arxiv.org/abs/2501.01921

PDF

https://arxiv.org/pdf/2501.01921.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model LLM Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Robot Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Time_Series Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot