Paper Reading AI Learner

Information-Maximized Soft Variable Discretization for Self-Supervised Image Representation Learning

2025-01-07 02:10:52
Chuang Niu, Wenjun Xia, Hongming Shan, Ge Wang

Abstract

Self-supervised learning (SSL) has emerged as a crucial technique in image processing, encoding, and understanding, especially for developing today's vision foundation models that utilize large-scale datasets without annotations to enhance various downstream tasks. This study introduces a novel SSL approach, Information-Maximized Soft Variable Discretization (IMSVD), for image representation learning. Specifically, IMSVD softly discretizes each variable in the latent space, enabling the estimation of their probability distributions over training batches and allowing the learning process to be directly guided by information measures. Motivated by the MultiView assumption, we propose an information-theoretic objective function to learn transform-invariant, non-travail, and redundancy-minimized representation features. We then derive a joint-cross entropy loss function for self-supervised image representation learning, which theoretically enjoys superiority over the existing methods in reducing feature redundancy. Notably, our non-contrastive IMSVD method statistically performs contrastive learning. Extensive experimental results demonstrate the effectiveness of IMSVD on various downstream tasks in terms of both accuracy and efficiency. Thanks to our variable discretization, the embedding features optimized by IMSVD offer unique explainability at the variable level. IMSVD has the potential to be adapted to other learning paradigms. Our code is publicly available at this https URL.

Abstract (translated)

自监督学习(Self-supervised Learning,SSL)已成为图像处理、编码和理解领域中的关键技术,特别是在开发当今利用大规模无标注数据集来增强各种下游任务的视觉基础模型方面。本研究提出了一种新颖的SSL方法——信息最大化软变量离散化(Information-Maximized Soft Variable Discretization, IMSVD),用于图像表示学习。具体来说,IMSVD在隐空间中对每个变量进行软性离散化处理,这使得能够估计训练批次中的概率分布,并允许通过信息度量直接指导学习过程。 受多视图假设的启发,我们提出了一种基于信息理论的目标函数来学习变换不变、非冗余且最小冗余表示特征。随后,我们推导出一种联合交叉熵损失函数用于自监督图像表示学习,在理论上比现有方法更能减少特征冗余度。值得注意的是,我们的非对比式IMSVD方法在统计上能够实现对比学习的效果。 广泛的实验结果证明了IMSVD在各种下游任务中的有效性和高效性,无论是在准确性还是效率方面均表现出色。由于我们对变量进行离散化处理,通过IMSVD优化的嵌入特征提供了独特的可解释性,特别是在变量层面。此外,IMSVD具有适应其他学习范式的潜力。 我们的代码已公开发布在 [此处](https://this https URL)(请将URL替换为实际链接)。

URL

https://arxiv.org/abs/2501.03469

PDF

https://arxiv.org/pdf/2501.03469.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model LLM Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Robot Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Time_Series Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot