Paper Reading AI Learner

The global consensus on the risk management of autonomous driving

2025-01-09 17:33:08
Sebastian Kr\"ugel, Matthias Uhl

Abstract

Every maneuver of a vehicle redistributes risks between road users. While human drivers do this intuitively, autonomous vehicles allow and require deliberative algorithmic risk management. But how should traffic risks be distributed among road users? In a global experimental study in eight countries with different cultural backgrounds and almost 11,000 participants, we compared risk distribution preferences. It turns out that risk preferences in road traffic are strikingly similar between the cultural zones. The vast majority of participants in all countries deviates from a guiding principle of minimizing accident probabilities in favor of weighing up the probability and severity of accidents. At the national level, the consideration of accident probability and severity hardly differs between countries. The social dilemma of autonomous vehicles detected in deterministic crash scenarios disappears in risk assessments of everyday traffic situations in all countries. In no country do cyclists receive a risk bonus that goes beyond their higher vulnerability. In sum, our results suggest that a global consensus on the risk ethics of autonomous driving is easier to establish than on the ethics of crashing.

Abstract (translated)

每一次车辆的操作都会重新分配道路上各使用者的风险。尽管人类驾驶员会凭直觉进行风险再分配,自动驾驶汽车则允许并需要通过算法来进行有意识的风险管理。但交通风险应该如何在道路使用者之间分布呢?在一个涵盖八个国家、具有不同文化背景的全球实验研究中,我们对近1.1万名参与者进行了风险分配偏好的对比分析。 结果显示,在道路交通中的风险偏好在各个文化区域间非常相似。所有国家的大多数参与者都偏离了最小化事故概率的原则,而是倾向于权衡事故的概率和严重性。从国家层面来看,各国在考虑事故发生概率和严重性的方法上几乎没有差异。在确定性碰撞场景中发现的自动驾驶车辆的社会困境,在所有国家的日常交通情况风险评估中都不复存在。 没有一个国家会给予骑自行车者超出其更高脆弱性以外的风险补偿。总的来说,我们的研究结果表明,建立全球统一的自动驾驶风险伦理共识比制定碰撞事件中的道德规范要容易得多。

URL

https://arxiv.org/abs/2501.05391

PDF

https://arxiv.org/pdf/2501.05391.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model LLM Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Robot Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Time_Series Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot