Paper Reading AI Learner

Adaptive Path-Planning for Autonomous Robots: A UCH-Enhanced Q-Learning Approach

2025-01-09 18:10:16
Wei Liu, Ruiyang Wang, Haonan Wang, Guangwei Liu

Abstract

Q-learning methods are widely used in robot path planning but often face challenges of inefficient search and slow convergence. We propose an Improved Q-learning (IQL) framework that enhances standard Q-learning in two significant ways. First, we introduce the Path Adaptive Collaborative Optimization (PACO) algorithm to optimize Q-table initialization, providing better initial estimates and accelerating learning. Second, we incorporate a Utility-Controlled Heuristic (UCH) mechanism with dynamically tuned parameters to optimize the reward function, enhancing the algorithm's accuracy and effectiveness in path-planning tasks. Extensive experiments in three different raster grid environments validate the superior performance of our IQL framework. The results demonstrate that our IQL algorithm outperforms existing methods, including FIQL, PP-QL-based CPP, DFQL, and QMABC algorithms, in terms of path-planning capabilities.

Abstract (translated)

Q-learning方法在机器人路径规划中被广泛使用,但常常面临搜索效率低和收敛速度慢的挑战。我们提出了一种改进型Q学习(IQL)框架,在两个重要方面提升了标准Q学习的方法。首先,我们引入了路径自适应协同优化(PACO)算法来优化Q表的初始化,提供更好的初始估计值并加速学习过程。其次,我们整合了一个动态调整参数的效用控制启发式(UCH)机制以优化奖励函数,从而提高算法在路径规划任务中的准确性和有效性。 我们在三种不同的栅格环境中进行了广泛的实验,验证了我们的IQL框架的优越性能。结果表明,在路径规划能力方面,我们的IQL算法优于现有方法,包括FIQL、基于PP-QL的CPP、DFQL和QMABC算法。

URL

https://arxiv.org/abs/2501.05411

PDF

https://arxiv.org/pdf/2501.05411.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model LLM Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Robot Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Time_Series Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot