Paper Reading AI Learner

RoboPanoptes: The All-seeing Robot with Whole-body Dexterity

2025-01-09 18:22:10
Xiaomeng Xu, Dominik Bauer, Shuran Song

Abstract

We present RoboPanoptes, a capable yet practical robot system that achieves whole-body dexterity through whole-body vision. Its whole-body dexterity allows the robot to utilize its entire body surface for manipulation, such as leveraging multiple contact points or navigating constrained spaces. Meanwhile, whole-body vision uses a camera system distributed over the robot's surface to provide comprehensive, multi-perspective visual feedback of its own and the environment's state. At its core, RoboPanoptes uses a whole-body visuomotor policy that learns complex manipulation skills directly from human demonstrations, efficiently aggregating information from the distributed cameras while maintaining resilience to sensor failures. Together, these design aspects unlock new capabilities and tasks, allowing RoboPanoptes to unbox in narrow spaces, sweep multiple or oversized objects, and succeed in multi-step stowing in cluttered environments, outperforming baselines in adaptability and efficiency. Results are best viewed on this https URL.

Abstract (translated)

我们介绍了RoboPanoptes,这是一种功能强大且实用的机器人系统,通过全身视觉实现了全身灵巧性。其全身灵巧性使机器人能够利用整个身体表面进行操作,例如使用多个接触点或在受限空间中导航。与此同时,全身视觉采用分布在机器人表面的摄像头系统来提供全面、多视角的自身状态和环境反馈。 RoboPanoptes的核心是一个全身视动策略(whole-body visuomotor policy),该策略可以直接从人类演示中学得复杂的操作技能,并能够有效地汇总分布式摄像机的信息,同时保持对传感器故障的鲁棒性。这些设计方面共同解锁了新的能力和任务,使RoboPanoptes能够在狭窄的空间中打开物品,在杂乱环境中清扫多个或超大尺寸物体以及完成多步骤储存任务,其适应性和效率优于基准线。 有关结果的最佳查看方式,请访问此 [URL](https://example.com)。

URL

https://arxiv.org/abs/2501.05420

PDF

https://arxiv.org/pdf/2501.05420.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model LLM Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Robot Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Time_Series Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot