Paper Reading AI Learner

Once for All: Train One Network and Specialize it for Efficient Deployment

2019-08-26 16:46:23
Han Cai, Chuang Gan, Song Han

Abstract

Efficient deployment of deep learning models requires specialized neural network architectures to best fit different hardware platforms and efficiency constraints (defined as deployment scenarios). Traditional approaches either manually design or use AutoML to search a specialized neural network and train it from scratch for each case. It is expensive and unscalable since their training cost is linear w.r.t. the number of deployment scenarios. In this work, we introduce Once for All (OFA) for efficient neural network design to handle many deployment scenarios, a new methodology that decouples model training from architecture search. Instead of training a specialized model for each case, we propose to train a once-for-all network that supports diverse architectural settings (depth, width, kernel size, and resolution). Given a deployment scenario, we can later search a specialized sub-network by selecting from the once-for-all network without training. As such, the training cost of specialized models is reduced from O(N) to O(1). However, it's challenging to prevent interference between many sub-networks. Therefore we propose the progressive shrinking algorithm, which is capable of training a once-for-all network to support more than $10^{19}$ sub-networks while maintaining the same accuracy as independently trained networks, saving the non-recurring engineering (NRE) cost. Extensive experiments on various hardware platforms (Mobile/CPU/GPU) and efficiency constraints show that OFA consistently achieves the same level (or better) ImageNet accuracy than SOTA neural architecture search (NAS) methods. Remarkably, OFA is orders of magnitude faster than NAS in handling multiple deployment scenarios (N). With N=40, OFA requires 14x fewer GPU hours than ProxylessNAS, 16x fewer GPU hours than FBNet and 1,142x fewer GPU hours than MnasNet. The more deployment scenarios, the more savings over NAS.

Abstract (translated)

URL

https://arxiv.org/abs/1908.09791

PDF

https://arxiv.org/pdf/1908.09791.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot